C. U. SHAH UNIVERSITY Summer Examination-2018

Subject Name: Thermodynamics

	Subject Code: 4TE04TDY1			Branch: B.Tech (Automobile)		
	Semest	er: 4	Date: 08/05/2018	Time: 10:30 To 01:30	Marks: 70	
	Instruct (1) (2) (3) (4)	ions: Use of P Instructio Draw ne Assume	rogrammable calculator & an ons written on main answer b at diagrams and figures (if ne suitable data if needed.	y other electronic instrument is pr ook are strictly to be obeyed. cessary) at right places.	cohibited.	
Q-1		Attem	pt the following questions:		(14)	
Atte	(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)	Write of What i Why is Write of Write of White What i What i What i Define Define What i	the statement of second law o s pressure ratio? s the Carnot cycle not practica the definition of Heat. Extensive properties. the definition of flow process law states that heat and work is thermal energy reservoir (T the meaning of word "Enthalp is dead state? is thermal equilibrium? a pure substance. excess air. is the COP of refrigerator? estions from O-2 to O-8	f thermo dynamics. able for steam power plant? mutual converted? ER)? by "?	$(1) \\ (1) $	
Q-2	(a) (b) (c)	Attem Explai Explai A reve 1200 a from h from a net hea reserve	pt all questions n microscopic and macroscop n quasi-static system with p-V ersible heat engine operates and 300 K respectively. The v heat engine. The pump operat reservoir at 250 K and deliv at is supplied to the reservoir oir at 1400 K.	bic point of view. V diagram. between high and low temperate whole output utilized to operates es on reversed Carnot cycle and vers it to the reservoir at 300 K. If r at 300 K, calculate the heat sup	(14) (03) (04) ture limit of a heat pump extracts heat f 140 kJ/s of oplied by the	

Q-3 Attempt all questions (14)

- (a) Derive the equation W = m (h1 h2) Q for reciprocating compressor. (04)
- (b) Define control volume. What is the difference between system and control (04) volume?

	(c)) Explain perpetual motion machine of the second kind – PPM 2.		
Q-4	(a) (b)	 Attempt all questions Write comparison of Otto, Diesel and dual cycle. An air standard Otto cycle has a compression ratio of 8. At the start of the compression process the temperature is 26° C and the pressure is 1 bar. If the max. temperature of the cycle is 1080° C. Calculate: (a) The heat supplied per kg of air. (b) The thermal efficiency of the cycle. 		
Q-5		Attempt all questions		
	(a)	(i) Superheating steam, (ii) Turbine inlet Pressure, (iii) condenser pressure.	(00)	
	(b)	Write a short note on Van der Waal's equation.	(06)	
	(c)	Prove that ΔE = Constant for isolated system.	(02)	
Q-6		Attempt all questions	(14)	
	(a)	Explain Construction and working of Junker's Gas calorimeter with neat sketch.	(07)	
	(b)	In an Otto cycle the temperature at the beginning and end of the isentropic compression are 423 K and 690 K respectively. Determine the air standard efficiency and compression ratio	(04)	
	(c)	Write comparison of first and second law of thermodynamics.	(03)	
O-7		Attempt all questions	(14)	
L.	(a)	A fuel has the following composition by mass:	(06)	
		Carbon= 85%, Hydrogen= 12.75% and Oxygen= 22.5%. Determine the stoichiometric air required per kg of fuel and the mass of products of combustion per kg of fuel		
	(b)	Explain adiabatic mixing of perfect gases.	(06)	
	(c)	Define (i) HCV (ii) LCV	(02)	
Q-8		Attempt all questions	(14)	
	(a)	Explain briefly Brayton cycle. Derive expression for optimum pressure ratio.	(08)	
	(b)	Write a short note on Adiabatic flame temperature.	(06)	

